
AD-786 754

MDC-PROGRAMMER: A MUD3LE-TO-
DATALANGUAGE TRANSLATOR FOR
INFORMATION RETRIEVAL

Safwan A. Bcngelloun

Massachusetts Institute of Technology

Prepared for:

Office of Naval Research
Advanceü Research Projects Agency

October 1^74

DISTRIBUTED BY;

um
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road. Springfield Va. 22151

Best
Available

Copy

BIBLIOGRAPHIC DATA
SHEET

1. Ktpurt No.
MAC Ttt-SS

_L
4. 1 ;i U Mid Suh(it K-

MDOProgrammer: A Muddle-tc-D&lalanguage Ir^nslator for
Information Retrieval

Safwan A. Bengelloun

3. Rt*cipient*s ACCC.SHIUII N

5- Re purl iTiT« : Issued

October 1974
6.

8- l'trft»rrTiiii>; < »r^.uif,-.ii i in H
N"- MAC TM- 53

9. rifforininjc Or^aiu/anun Name and Address

PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY:

545 Technology Square, Cambridge, Massachusetts 02139

10. Proi. . t I ask *ofk linn Nu.

I I. ' Dfitrj' i (iranl \<>.

NOQOI4-70-A-0362-0006

12. SpmiSf/inn Dr^am/afuxi Simt- and Address

Office of Naval Research
Department of the Navy
Information Systems Program
Arlington, Va 22217

13. I yp "I K« 1«": ^ I'iri.Hl
(»vtrtd : Interim
Scientific Report

14.

15. Vipp!cnu-nt«fv Note»

Based on an S.B. Thesis, MIT Department of Electrical Engineering, May 20, 1974

16. \.-*:a»t*

This memo describes a practical application within the framework of the ATA
computer network of the philosophy that a fully developed computer network should
appear at a virtual extension of the user's own software environment. The application
involves the design and implementation of a software facility that will permit users
at MIT's Dynamic Modeling System to consider the retrieval component of the
Datacornputer (developed and run by the Computer Corporation of America) as an
extension of the Muddle environment. This facility generates efficient Datalanguage
retrieval codes, handles inter-process control of the Data compute»', and manages all
the necessary network connections.

17. K« v Uord* and nocumt-nf Analysis. 17a. Descriptofs

NATIONA- Tl/ HNICÄI
INF0RMA1 C N ERVH E

(>ptn I ii i. i I i rms

17c. ' <> A 1 I I i. IdA.foup

18. A*, .iiialtility St4tcmt-nl

Approved for Public Release;

Distribution Unlimited

19. "st. uri«v (las-. I 1 his
Hi port)

.- . LMLA.^IIU.U
20. -M. nnrv t bs. Mhis

..I l-i,.

09
lt.-

12?

1 \< I VssMll h
» O •".' H f >'. 1'. (" I /

Ulis FORM MAY HI RFHKOIXK I |)

NDC-PROGRAPWER:

A mJDDLE-TQ-DATAUNGUAGE TIAMSLATOK FOK

INFOimATION RETRIEVAL

Technical B««orandu»

by

Safwan A. Bangelloun

June 1974

This research was supported by the Advanced Rtce^rch Projects
Agency of the Department of Defense, under »i^A Order No. 2095,
which was aonitored by Office of Naval Research Contract No.
WOOOM-70-A-0362-0006.

PROJECT F^AC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Caabridge nas&achusetts 02139

ABSTRACT

This memo describes a practical application within the fraoework
of the ARPA computer network of the philosophy that a fully
developed computer network should appear as a virtual extension
of tne user's own software environment. The application
involves the design and iaplementation of a software facility
that will permit users at HIT'S Dynamic Hodtlinci System to
considc- the retrieval component ct the Datacomputer (daveloped
and run by the Computer Corporation of Aaerica) as an extension
of the Muddle environment. This facility generates efficient
Datalanguage retrieval code, handles Inter-process control of
the Datacomputer, and manages all the necessary networh
connections.

This memo reproduces a thesis of the saoe title submitted to the
Department of Electrical Engineering, fl.I.T., on Nay 20, 1974,
in partial fulfillment of the requirements for the Degree of
Bachelor of Science.

ACMJOVLEPGEWENTS

The author would like to -hanh Hr. Albtrt Vezzi for

encouragement and guidance in writing this memo. Thanks are

also due to Hal Furray et al. at CCA for winy discussions about

the Datac-* uter, and to the aenbers of the Prograiaiino

Technology Division for their support and suggestions.

IABU OF CONTENTS

INTRODUCTION PAGE 5

OUTLINE PACE 8

I. THE ARPANET PAGE 9

H. THE TWO SYSTE1S

THE DATACOKPUTER PAGE 12

MUDDLE PAGE 18

III. THE TRANSLATION SYSTEM PAGE 20

PROCESS-PROCESS COrlHUN I CATION. . . PAGE 27

QWARISOK WITH PREVIOUS SiXTOIS. PAGE 28

SCENARIO PAGE 30

IV. CONCLUDING REHAfJ: . .PAGE 39

REFERENCES PAGE 40

APPENDIX 1: FILE MODELS MGE 41

APPENDIX 2: PROGRAM ABSTRACTS PAGE 43

INTRODUCTION

The efficient use of computing resources bas been

historically one of the primary concerns of computer scientists.

The efforts in this direction have run along two parallel paths,

the one being the optimization of the sharing of hardware

resources (computing power), and the other the increasingly more

important area of tho sharing of software resources, fhe former

problej forced the trend away from dedicated systems and towards

the multi-programmed, multi-access computer that Is now in

comaon use in virtually every application branch of data

processing. But nÄ»lt:-progrdaeed systems per se do not provide

an approoriate framework within which to approach the software

problem. In particular:

(a) Because the number of users that have access to a

single roultiprogranmed facility is limited in size, and U^ause

the denand for different applications is va;ied, the degree of

specialization of any single facility remains restricted within

well-defined boundaries.

(b) Because of this size limit, the access to the number

of software resources is again limited. Computer manufacturers

alleviate this problem by providing a set of "software packages"

that are found to be useful in many applications. But this

approach not only limits the user to the facilities of a single

manufacturer, but often to the type of hardware available to hia

from that manufacturer.

(c) It Is U^ortant that the sliaring of resources not be

cumbered with time delavs (inclurltng those associated with

tance). Users separated by great distances but having

s. lilar goals in comnon need to stay directly abreast with the

oexelopments in their particular areas of interest.

It was such considerations as the above that have led to

the interest In and the development of coiaputer networks. By

linking together many computers so that the resources of each

are readily available from every other site, the nuober of

resources available to any individual user is ianediately

increased. By making ea:h resource potentially available to

this widely expju.ded set of users, the econonies of scale b In

to make specialization within rvch. Finally the linkage 01

computers provides a communication medium among users that will

allow the necessary interaction that forms the basis of software

sharing.

A primitive computer network appears to the user as a

collection of distinct computing resources (each with its own

set of nuances) linked together throuqh some cowiunlcation

medium. Use of foreign resources requires familiarity with

foreign software procedures as well as with the mechanics of

gaining access to these rcaources. By contrast, it is desirable

that foreign resources appear as a logical extension of each

user's omputing environment. This memo describes the design

and insplementdtion of a software facility that will allow th«

users of the WIT Project PWC Dynanic Flodeling Systes [1] to

consider the retrieval component of the Computer Corporation of

America Datacowputer [2, 3] as a logical extension of the IMS

Pluddle environment [4]. In particular it will allow the users

at HIT-DnS to:

(a) ignor : the management of network connections to the

Datacomputer;

(b) ignore the management of inter-process control of

the Datacocnputer;

(c) form retrieval requests from any database at the

Daliconputer using Huddle syntcx, translating from that syntax

into the Datalanguage code that the DaUcomputer requires for

retrieval.

This facilUy follows upon similar efforts in the past,

but it is far superior to them In terms of generality,

programninq consistency, and adequacy of Datalanguage code

generated.

This incorporation of the Datacorputer into the Huddle

environment not only is desirable from Ue point of view of the

user at fUT-DÜS (since it accepts syntax that he is famllar

with), but also for the general network user: it is more

convenient t" r-ogram the Datacomputer with this facility;

iurtherraora the addition of the "front-end" processing power of

fluddle to the Datacoaputer provides to the network user a

facility in its own right that is unique to the network.

OUTLINE

Chapter I describes the characteristics of the ARFA

network and the type of probleos that one faces when attempting

to link resources within that network. Chapter II discusses the

two resources that are to be linked together (Muddle and the

Datacomputer) and the syntactic and semantic characteristics of

each. The translation system is then discussed in full in the

third chapter, with examples and scenarios Included; comparison

with previous systems is made Finally Chapter IV concludts the

memo and gives some suggestions for further jevelopment of such

a facility

JL IHE ARPANET

Undoubtedly the oost .witltlous effort being »ade in the

area of computer networks is with the Advanced Research Projects

Agency Computer Communication Network (AHPANEi'). This

geographically distributed network, originally linking some

twenty computers when it first bec<si" operational in 1970,

currently supports well over 40 such Mosts spanning the distance

from Hawaii, across continental United States, to London,

England. Its chief characteristic (as de from its geographic«?

distribution) is that it connects widely differing conputer

systems which share in cowaon only the capability to support

local multiprogramming.

The ARPANET interconnects a multitude of sites, each

site consisting of a maximum of four computer systems and one

communication computer (IHP). I^ie INPs of the network (each

linked to a maximuni of five others) provide the necessary

standardization and in general are responsible for message

traffic control across the network. An IMP also forms the

interface between eat "' the computer systems and the network

as a whole.

Standardization throughout the network is also provided

by a serir of layered protocols, i.e. a set of agreements

betwp^n different processes as to the format through which they

are to locate, synchronize, and exchange information. Currently

the ARPANET supports three levels of protocols:

10

(a) bottom-level INP-IHP and HOST-IHP protocols to

manage the flov* , inTorraation ecross the network (I.e. control,

routing, etc.) [5, 6];

(b) a HOST-HOST protocol for the creation of vJ ^ual

process-process connections between processes residing on

different hosts [7];

(c) function-oriented process-proces« protocols to

support specific tasks (such as the "Telnet protocol,■ [8] "file

transfer protocol (FTP)." [9] and the "reitote-Job entry

protocol* [10]).

It is thp prnbiercs associated "^ith the last set of

protocols that concern us here. In particular, If reaote

facilities are ever to be viewed a- a virtual «xtension of each

host on the network, this set f protocols will have to be

handled automatically by comffiunicatlng processes at the two

remote sites, with the user unaware of their existence. The

implementation of such a facility, in which a prograa as opposed

to a human user is directly manipulating a foreign service,

brings with it its own particular problems. Specifically, for

most time-shareo computers, the set of responses generated by

the system assume a human user at the other end wtin will use his

own inielligence to act upon the responses he has received.

Responses usually are coded in natural language (e.g. "xyz

loading"), are often unsynch.ronized (e.g. "systea golns down"),

arc often associated with the nuances of particular hosts

(proopt characters, etc.).

The approach to the solution of this problea has been

the adoption of v.tat sight be tensed the user-serve' wadig«:

t.ic server site passively accepting coaaunids fivm the user and

type-coding its responses to inform the user of the state tiiat

it is currently ir, to provide hin wit^ necessary inforaationti

messages that he wy wish to art upon, and to infora hin when

errors have occurred (and if possible their severity so that

-j/propriate action rright be taken) The FTF protocol is an

exaarle of tb" ^ßplicctlor of such a parÄdi^ü. and ^e shall sae

thf t the Datacofsputer, by using this paradiga, allows us to

incc-puiate It as a virtu?! «xtenslon of a Huddla process.

12

JLL IHE IW SYSUflS

THE DATACQHPUTER

The Datacrjfflput-^r is an infonaa.ion storage and retrieval

service operated by the Computer Corporation cf Aaenca to serve

the general ARPANET cowaunity. Designed «venU-ally to provide

over a trillion bits of storage online, this developing syste«

is planned to becooe one of the «alor stores of inforwatlon for

the network.

The Dataconputer is particularly suited for the

management of highly structured information such as that found

in transportation reservation schedules or weather databases,

where the structure of *he information it equally as important

as its content. To the staggering amount of storage capacity Is

added the capability to rapidly retrieve subsets of the stored

data according to either its stru .ural organization or Its

content.

The Datacomputer is purely a storage device with no

■front-end'' processing capabilities (beyond the retrieval of

information). This is a disadvantage, since Interest in

structured data often goes beyond the inoJvldual items and U'

the aggregate; we speak of "batting averages.* "total Jays of

urshine," "ger cent of time up," eve. Unless such values (i.e.

average, t. tal, per cent) ara explicitly stored in the database,

the user must rely on another processing facility in order to

13

arrive at these. Ir. short the DutaconpuUr lacks a front-end

statistical patkage.

Information at the DiUcooputer is stored In a

hierarchical structu-e. Central to the 'inderstandlng of this

structure is the notion of a "container." Fig. 1 shows a

typical container structure of a hypothetical database

concerning HIT'S Project HAC. FI5. 2 snows the actual

realization of this description in a DatacoMputer file.

N

rtAC

PERSONNEL

AI

STUDENTS

m.

STUDENTS

STUDENT

FACS

I NAME
i
i 1 1

tEAR I

1 1 1
1
1
! STAVE SALARY |

1 1 !
1

1 i 1
 1

FAC

^AflE RANK

I I I I

STATE SALARY

FJGUR' 1: A contilntr structure

15

Rlt «AC UST
PERSONNiEL STRUCT

AI STRUCT
STUDENTS UST (4^)

STUDENT STRUCT
WARE SJR (10)
YEAR STR (2)
STATE m (10)
SALARY STR (3)

IM
FACS UST (G>

FAC STRUlT

«gAflE JJR (10)
urn su do)
STATE STR (10)
SALARY SJR (3)

END
END
PIL STRUCT

STUDENTS USJ (40)
STUDENT STRUCT

NAME STR (10)
YEAR STR (2)
STATE SLR (10)
SALARY STR (3)

END
FACS UST (20)

FAC STRUCT
NAHE SIR (10)
RANl^ 5TR (10)
STATE STR (10)
SALARY SIR (3)

END

END

FIGURE 2: A Datacooputer HI« description

16

In fig. Z we note that the containers com in three

typos: STRlng, STRUCTure. and LIST. An SIR contains a fixed

length string of ASCII characters (the ler.iwi of the string of

characters is specified inside the parentheses following tn^

5TR). Currently the Datacomputer will score only fixed length

ASCII strings, but it will eventually support other typts of

da .a.

A LIST contains other contfuners c^ Ui*: '*'"*.%

description. Thus a list description of the for»:

HOSTS LIST
HOoT SJR (3)

will contain a list of host numbers.

A STRUCT contains < ^er containers but not necessarily

of identical description. * »STRUCT is useful in saklng logical

connections between iteos in a database as well as providing a

naming mechanism (the two concepts are of course interrelated).

All the above is a reflection of infonwtion

organization c* a file, not of the file itself. Conceptually wt

nay think of the following file:

BALLPLAYERS UST
BALLPLAYER SIRUCJ

NAME SIR (16)
BATTING-AVERAGE STR (3)

END

as bei'"' a list of ballplayers and their associated batting

averages. An entry in such a list (e.g. " Babe Ruth320")

would be reff.red to as a list member whiU each field in the

entry (i.e. the r.«u9e field (t^be Ruth) and tne batting average

17

fl^ld (320)) are referred lo as list member eleaents.

The basic statenent used for retrieval by content froo

the Uatacoroputer is the FOR statement. Logically eaking, the .,

FOR statement is a universal quantifier over th« list-sneobers of

a list:

V(X € LISTX\ P(X)

where P(x) is a set of connected predicates th_ ♦ ach li^t

member raust satisfy before being added to an output list. Ths

predicates that the Datacotsputer understands are EQ (eqi^a1 or

identity), NE (not equöl or not Identity;, jj (less than), LE

(less than or equal ♦c), GT (greater than), and G£ (greater than

or equal to) The logical connectives that it recognizes are

AND. OR, and NOT.

The FOR statenent in reality is a bi*. aoi e co«plR \ted

then the above. Specifically, a user programing in

Datal?nguag^ must explicitly describe the fonwt of the output

list, which for efHciency should aatch the Ust-aeabers that

are output. Additionally a user aay specify which STRs or

STRUCTs within a lift he wishes to see froa each list-aember

that satisfies the given predicate. For exaaple, w^ aay wish to

know the naoes of the ballplayers who have a batting average

greater than 300, but we nay not be interested in seeing the

batting average itself; in totality the Datalanguage progra« for

such a request would take the fora:

is

C&yi OUTPUT PORT LIST
him m (is).

FOR OUTPUT. mn, 3ALLPIAYERS. BALLPLAYER
WITH BAfTIMG-AVERAGI-: 01 ^OO'

END;

The first two lines above would create an appropriate output

port with only one field (the naae field to be returned); note

that the names that are given to the different containers need

not match the names from the file ^hat are to be retrieved, Tl?e

last three lines effectively say: for every li$t-9e«ber of the

ballplayers list with batting average eleK«nt qreater than 300,

add the NAME element to the output list OUTPUT.

«UDDLE

The Huddle prograaaing language is a direct outgrowth öf

LISP It was designed by members of the HIT Artificial

Intelligence Laboratory and the Prograaning Technology Oiv?<ion

of MIT Proj^rt aar ?< an environaent wUhin which PLANNER and

Planner-like languages might run. Its chief advantages over

LISP are more data types, more readable syntax, ease of

extensibility, network interfacing primitives, and a base for

advanced graphics work.

Huddle has been running at HIT-Dfl5 for the past three

years. During this period it has been continually augmented:

this process continues as now areas of research are identified

and explored.

19

Beyond the l>as6 faatures of ÜLddl«, the 0K5

inplementation provides access to a general dynaaically-loadable

■fluddle Library." This library consists of a set of fojicUons

and global data which users'; say acce^a in buildtng up »ore

complex prograais out of other users' previous work. Within this

library are such items as a general context-free parser for BWF

grammars and a graphics package for display consoles. A Ruddle

compiler is also inpleaented in order to speed the processing of

debugged code.

20

III. THE TRANSLATION SV^SEW

Tht translation sysiea (NDC-PrograaiMr, or SDC for

short) is capable of fonaulating retrieval ri»quests for an

arbitrary database at the Datacoaputer. NDC oust be Bade aware

of the format of each database at the Datacoaputer fro» ntilch a

user may want to retrieve data. This is done by creating a file

containing a model (description) of the »"articular Datacoaputer

file's structure. This model is created and stored «t the

Dynamic Pfodeling System, A user who wishes to use the retrieval

system need only identify to it the local DNS file where the

database model is stored. The model encompasses, in addition to

all the information found in a Datarnmputer file description, a

few other iteas which are used to provide a aore convenient user

Interface. The process of creating the model file is rtlatively

easy and straightforward, and it need only be done once for eich

new Datacoraputer database from which we wish to retrieve

information. Appendix) contains the format of such a acdel

along with a sample model file.

Given that a Datacomputer file and its corresponding DK5

model file exist. FfDC-Programaer when loaded will connect to the

Datacomputer (using the standard network Initial Connection

Protocol [11]), perform the LOGIW for the current user, and open

the appropriate file for reading. If successful in all three,

HDC will build a series of functions bearing the slaple naaes of

all the containers in the Datacoaputer file model.

21

The functions that «re available to the user (beyond the

priroitives of Muddle and any functions that he iNiy have defined

or used from the library) are these:

(a) A set of functions bearing the lisple nanes of «11 the

containers. These function* ire used to create Uie predicate

th«t the output list members must satisfy.

(b) A series of functions that move a pointer inside the

model of the database; the position of the pointer is crucial in

determining what actions the set of functions in («) are to

perform. The functions that manipulate the pointer «r« shown

here in muddle syntax:

<PTOP> ;"Position the pointer at .op of model."

<R> ;"Flove pointer one position to the right,"

<L> ^Move pointer one position to the left."

<DR> ;*nove pointer down one level to the right."

<0L> ;"Mov9 pointer dorfii one level to the left."

<UR> ^Hove pointer up one level to the right."

 ;"nove pointer up one level to the left."

(c) REQUEST function that is used to specify the associated

LIST member elements that are to be returned for each LIST

member satisfying the predicate.

(d) An EXECUTE command that will return to he user a fluddle

channel from which the information that has bee: retrieved is to

be read. The EXECUTE coranand alone actually interacts with the

Datacomputer. It starts a compilation process that generates

72

üatalanguage code according to th« specifications oade by the

above sets of functions, transmits that, code to the

Dnacomputer, and returns a channel on which the requested data

is waiting to be read.

(e) A set of "convenience conaands" which allow the user to

enter different aodes, specify a change of file fro« the one

currently being processed, display the substmcturc that the

pointer points to, display or suppress the set of Datacomputer

control responses, etc.

It should be noted that the position of the pointer

determines the actions to te taken by the various fur'-tiofis In

the set (a) above. Application of one of the functions will

send the NDC-Prograimer through an exhaustive search of that

part of the file model currently at the pointer. Ths search

restricts the values of the data returned from each container

bearing the name of the function to the values specified In the

argument of the fumion. For example, the ^ppiicition of the

function:

<STATE (BHA5S")>

for a file with the description of that in figure 3 will have

the following results depending on whether the pointer is at

ptrl, ptrZ, or ptr3:

(x) If at ptrl, this requires all the /alues of the field

olATE within the list PIAC to be ■ RASS31 (the padding is

23

necessary because the data is stored in fixed length fields;

NDC-Programmer will pad appropriately for the user). This would

be used for example in a request such as "Which people at

Project Mac come from flassachusetts?*

(b) If at ptr2t this requires all the values of the field

STATE withm the AI group to be ■ HASS", as in "Wiich

people from the AI group are froa Massachusetts?"

(c) If at ptr3, this requires all the values of the fieli

STATE for the students within the AI group to be Hassacnusetts.

2^

EILE tlAC US!
PERSONMEL STRUCT <«==ptrl

AI STRUCT <"rptr2
STUDENTS IIS± (40) <«sptr3

STUDENT STRUCT
NAME SJR (10)
YEAR SIR (2)
STATE STJR (10)
SALARY STR (3)

END
FACS llZl (20;

FAC STRUCT
NAME SIR (10)
RANK SIR (10)
STATE STR (10)
SALARY STK (3)

M
END
ML STRUCT

STUDENTS USI (40)
STUDENT STRUCT

NAME SIR (10)
YEAR 5JR (2)
STATE ST? (10)
SALARY STR (3)

END
FACS LIST (20)

FAC STRUCT
NAME SJR (10)
RANK SIR (10)
STATE SIR (10)
SALARY SIR (3)

END

END

FIGURE 3: A Datacoaputer flla description with pointers

TT

The actions of these functions also depend on Uu? iype

of container that the function naae refers to (the containers

being the ones unambiguously located by the above procedure).

In the pointer examples, all the containers were STRs and the

action taken was as described. However if the container turns

out to be a STRUCT, the arguments cf the function are passed (in

cder) to each container within the STRUCT. This procedure Is

recursive, allowing STRUCTs to be eicbedded within other SPfjCTs.

For the description in fig. Z, a- application of the function

<5TUDt«T a-J0HNB)(r?3B))>

1«: equivalent to the application of the functions

<NArtE ("JOHN"))

aEAR ("73-)>

Note that any previous statement about other fields that

place restrictions on the LIST members that are to be returned

remain unaffected. If we wished to specify those students named

John with salaries equal to 500 (irrespective of their YEAR or

STATE), this would be done in the following manner by using a

null list in the position of the YEAR and STATE fields:

(STUDENT (f"JOHNBH)()(500))>

If the function name refers to a LIST, the arguments are

passed down again as with STRUCT, but this time to the one

(there can be only one) container that the list encloses.

Strictly speaking, functions bearing the names of LISTs

and STRUCTs are not necessary. However, they are Important,

^6

because it i$ In terns of these containers (es well as the $TKs)

that the user thinks about his data; they provide an additional

convenience of nak'.ig one function call instead of several; and

finally they allow the user to rorolve siaple nase aobigulty

without moving the position of the pointer.

The set of container nane functions can also takt*

arguments involving the predicates that the Dataco«r«iter

understands (in the above examples the implicit predicate was

IQ), linked together by the connective 'OR*. Thus application

of ♦'»e following function is acceptable:

vSTUDJYT (("JOHN" OR "JACIC-)

(LT ■73" OR GE -/S")))

This would returr *hose students named Jack or John who

graduated before 73 or who will graduate after 74.

The REQUEST command is used to specify Milch elements of

each LIST-member from the output list are to be returned. The

format of the REQUEST command is as follows:

REQUEST 4naft€> 4name> ...>

where ^naroe> refers to the names of the containers that are to

be returned. These simple names are resolved in terms of U»e

description pointer as was done with the container name

functions. If 4name> refers unambiguously to an $TR. the SJt

values are returned; if <name> refers unambiguously to a STRUCT,

all elements within that STRICT are returned; finally if 4na*e>

refers unambiguously to a LIST, all the elements of each list

m~

27

raenber are returned.

The EXECUTE coüoand, applied simply as

<EXECUTE)

starts the actual retrieval process. This process is a two pass

algorithm. The first pass builds an appropriate port

description ror output, and the second pass uses that

description in the fonnulation of an appropriate Dat language

request statement. Both passes are recursive, allowing file

models to have arbitrary embeddins of containers and thus

capable of processing any file that coi»ld conceivably b« stored

at the Datacoraputer (for version 0/9).

PROCESS-PROCESS COPIffUNKATION

Consnunication with the Dataconputer is done through the

user-server paradigm discussed earlier in this aemo. The

Dataconputer will sit passively, interpreting Datalanguage

cominands and sending out information to the user site specifying

the actions that ^re being taken as a result of these coaoands.

This set of information messages is sent out one line at a tiae.

The first five characters of a response line are a message code

intended to be used by a foreign program, while the reoaindtr of

the line is the natural language equivalent of this code for

human interpretation.

The class of responses sent by the Da\.?/joaputer f.ill

broadly into three areas:

28

(a) informational nessages

(b) s^sc>ronization Mssages

(c) error nessages

The first character of each response line detemlnes the

class Mithin which each message falls. Error aessages are

further subcategorized according to severity, so that the user

site may take appropriate action. Typical synchronization

messages are "waiting for datalanguage Input,* "waiting for

data," et:. Some informational messages are "adding node to

table," "execution complete,■ etc. Error aessages can be either

compilation or execution errors. In the latter case, a series

of messages will follow, describing the actions taken. These

actions may vary from "temporary ports flushad" to "crashing

use»- Job." Fach error message is then followed by a

synchronization message which will allow the two processes to

get back iMo step after having lost control through in

unexpected event.

COMPARISON wrTH PREVIOUS SYSTEWS

Two et forts along similar lines preceded this one.

These were XikRET [12] written by the author, and SHART written

by Hal Murray at Computer Corporation of America.

Every twenty minutes, a program at the Dynamic Modeling

System wakes up to record th? statuses of the different hosts

across the network. The program collects this information and

29

stores it in the SURVEY database at the Datacoaputer. This

information proved to be of interest to the general network

conraunity, so a task-specific F!uddle-to-Datalanguage prograaner

was written for retrieving this information. It was the success

and usefulness of this facility that brought about

considerations for a general ?iuddle-to-Datalanguage programer.

SrIART was a prompt-response system for generating

datalanguage code from the set of responses made by the user,

liiere are two chief difficulties with the whole concept of a

prompt-response system. One is that as the number of containers

in a file tend to increase, the system becomes an Increasingly

more difficult interface for the user, as he may have to be

prompted unnecessarily for a large number of fields. The second

difficulty is that the prompt-response is not a consistent

embeoding of the system within a larger software environment;

such an approach fragmentizes resources as opposed to unifying

them into more powerful facilities.

SPIART is not a fully general system. Specifically It

will not handle any files with embedded lists within them. Its

uspfulness is thus restricted to a vtry saall subset of the

potentially rich information structures that the Datacomputer 1$

capable of handling. In addition, waking SHART intelligent

enough to retrieve information from a new file description

requires about three days of system programaer time. HDC-

Programmpr improves this performance in two respects. {]) The

30

task of acquiring the capabilities to process a new file does

not require the intervention of a systems prograner. It is

simple enough so that any user who knows the file structure can

create the model file. (2) This process for creating the filt

nodel takes on the order of minutes as opposed to days.

SCENARIO

A stnpl* scenario of HDC-Prograacser in use is outlined

below. It Is a transcript of an actual session made at the

Dynamic Flodeling System. In this session, retrieval of

information is made from two files: PEOPLE as given in the

example database in appendix 1, and SURVEY as given in figure 4.

The former file was created for testing purposes whereas the

latter is a "real" fil« which is accessed quite often to get

information regarding .he past perfomance of various hosts on

the network. The underlined lines below represent tbo^e that

have been typed in by the user; the indented lines have been

included for explanatory purposes; the lines beginning with a

period or semi-colon are responses from the Datacomputer; all

other lines are what Pfuddle prints or returns as a result of

function application.

LISTENING-AT-LEVEL I PROCESS 1

Message from Huddle indicating it is listening for commands.

<FLOAD 'SAB^-DC'X

31

Above function will load P1DC (the $ sign typed in by the
user starts the evaluation by huddle).

fluodle to Datalanguage TrinsUtor
Please type name of lo-.al file containing
Datacociputer file nojel:
^ABiPEOPLE FILE^

fIDC greeting message followed by a string typed In by the
user identifying the tathnane of the file containing the
model of the Datacomputer file PEOPLE.

;J150 21-05-74 0034:43 FCRUN: HERE WE GO
;J200 21-05-74 0034:43 RHRUN: READY FOR REQUES*
.1210 21-05-74 0034:43 LAGC: READING NEW DL BUIFER

Datacomputer greeting message; it is now ready to receive
comniands---first the user »ust be logged in.

LOGIN NAHE PLEASE:

Typed out by fIDC to prompt user for login naae.

»HIT.DFS.SURVEY'S
;J209 21-05-74 0035:09 RHRUW: EXECUTION OHPLETE
;J200 21-05-74 0035:10 RHfVJN: READY FOR R mST
.1210 21-05-74 0035:10 LAGC: REAü:% NEW Di BUFFER

Login is completed. Not'* fhn the user is . »rrently in
UNSOAR mode, i.e. the responses of the Datacomputer «re
displayed at his console. He can vary ts*s mode (to one In
which the Datacomputer res^onsts are not displayed) by
application of the function SOAK.

Ü000 21-05-74 0075:25 DHKD: ADDING PUNCTUATION
J209 21-05-74 0035:28 RHRUN: EXECHuON COMPLETE
J200 21-05-74 0035:28 RHRUN: READY FOR REQUEST
1210 21-05-74 0035:28 LAGC: READING NEW ÜL BUFFER

'DONE"

The four Datacomputer lines are in response vc the opening
of the PEOPLE file; the open was successful; the last line
was returned by Huddle indicating that loading of HOC has
been completed.

<CONTLXT>$

CONTEXT is a function which will show the file aodel to the
user below the point where his pointer is currently located.
Immediately following loading, the pointer will always point

32

to the top of the aodel. After pr Hng the aodel, CONTFJCT
will then return the pathnaae of the ,ointer.

(PEOPLE
LIST
()
(PERSON
STRUCT

0
(NAHE STR ())
(ADDRESS STR ())
(CITY STR ())
(STATE STR ())
(ZIP STR ())
(DEPENDENTS
LIST
0
(DEPENDENT STRUCT () (NA«E STR ()) (AGE STR ())))))

"PEOPLE"

<XE«SE)$
"DONE"

Enters the user into terse aode; i.e. after applying the
container name functions or the REQUEST function or the
EXECUTE function, the aodel will not be printed but rather
only the pointer pathnace will be returned.

<REQUFST 'N'MKE?>$
■PEOPLE*

Request is made for all names within the file; since the
pointer is currently at the top of the model, all th« names
of the children as well as the adults will be returned.

<SET CH <EXECUTE»S
;J209 21-05-74 0046:07 RHRUN: EXECUTION COMPLETE
;J20ö 21-05-74 0046:07 RHRUN: READY FOR REQUEST
.1210 21-05-74 0046:08 LAGC: READING NEW DL BUFFER

This set of Datacomputer responses is made In response to
the creation of an output port. In reality the entire
Data language program has been to the Datacomputer, but
resvnchroriization occurs at the i.axt request. The foKowlng
code was sent to the Datacomputer:

■CREATE L2 TEWP PORT LIST
ST1 STRUCT

S2 SJR (15)
LI USI (0. 2). D»'«'

33

51 §IR(15)
END ;■

followed by the request:

" FOR ',2.311 .PEOPLE.PERSON
S2=NÄrt£;
FOR L1.S1f PEOPLE.PERSON.DEPENDENTS.DEPENDENT

Sl=NAf1E;
END;

END;"

and Muddle returns:

#CHANNEL [4 -READ- -1 -1 "NET" 0 56€8 13893763 "NET* 4127 4118
23748359936 <ERROR END-OF-FILE!-ERRORS) 0 0 0 0 10 "]

the channel returned by the EXECUTE coeaand.

<FILECOPY .CH .OUTCHAN>$

FILECOPY is a Pluddle function which copies data froa one
channel to another; in this case it is copying the data
coming from the Dataconputer to the user console output
channel, giving:

BILL STORM •
ALICE FALL JILL FALL •

SCOTT SUMHER WARY SUWER Ä

138

The above are the names returned; the ■•■ was specified in
the generated Dat^language code to separate the occurrences
of inner list faenbers. In this aanner we know that Jill
Fall is a dependent and that Hary Sumser is a dependent.
The 138 at the end is a count of the number of characters
that have been received over the channel; it is returned by
FILECOPY. The next request will be to ask for the address
of Scott Summer. Here however things will be done in SOAK
mode so that the Datacoaputer responses will no longer
appear.

<SOAK>$
"D(M"

<NAME ("SCOTT SUHP1ER")>S
■PEOPLE"

IRLQUISI (STATE ADDRESS)>S
"PEOPLE"

34

<SET CH <LXF.CUTE>»
fPCHANNEL [4 "READ- -1-1 "NET- 0 6512 13893763 ■NET« 4127 4118
23748359936 <ERROR END-0F-P1LE!-ERRORS) 0 0 0 0 10 '■]

<FiLECOPY .CH .OUTCHAN>S
HA 9 BOW STREET
23

9 BOW STRCET ano Hh were found as the address of Scott
Summer in the order requested: first the state, then the
street address. The character count is apain returned by
FILECOPY. Note that for these examples we did not need our
pointer functions (prlnarily because of the siBplicity of
the file); performance of these functions is shown below.

<CVAL>$
"PEOPLE"

Clear all values; the file oodel no« looks like It did when
we first loaded PIDC.

<DR>$
■PEOPLE. PERSOW

<DR>5
"PEOPLE.PERSON.NAHE-

<R 5>S
-PEOPLE.PERSON.DEPENDENTS"

<C0NTEXT>$
(DEPENDENTS
LIST
0
(DEPENDENT
STRUC
0
(NAffE STR ())
(AGE STR ())))

"PEOPLE.PERSON.DEPENDENTS"

(Y74Q1 LIST ()

(LOGTRY STRUCT #FALSE()

(DAY STR () #FALSE() 2 !B0 T T 1 31)

(flONTH STR () #FALSE() 2 '"O T T 1 12)

(YEAR STR () #FALSE() 2 fO T T 73 74)

(HRnIN STR () #FALSE() * I^O T #FALSE() #FALSE() #FALSE())

(HOST STR () #FALSE() 3 !B0 T T 0 6)

(STATUS STR () #FALSE() 1 #FALSE() #FALSE() T 0 6)

(SOC STR () #FALSE() 3 #FAL5E() #FALSE() #FAL5E() #FAL5E()

#FALSE())

(SCHED STR n #FALSE() 1 #FAL5E() #FALSE() #FAL5E() #FALSE()

#FALSE())

(RESTIHE STR () #FALSE() 3 fO T #FALSE() #FALSE() #FALSE())))

FIGURE 4: SURVEY database aodel

36

(NEWFILE WSAB;SURVL. FILE">$

A change fron the file from which informtion 1$ to be
retrieved is done by the NEWFILE coonand; the argument to
the command raust be the pathnane of the DPIS file where the
new Datacomputer file model is stored.

"YJW

<CONTEXT>S
(Y74Q1
LIST
()
(LOOTRY

STRUCT
0
(DAY STR ())
(MONTH STR ())
(YEAR STR ())

RMIN STR ())
(HOST STR ())
(STATUS STR ())
(SOC STR ())
(SCHED STR ())
(RESTIHE STR ())))

"Y74Qr

This survey file contains all the "irvey information for the
first quarter of 1974.

<HOST (31)>S
"Y74Q1"

UmMIN (GT 500 AMD LT 600)>S
"Y'74Q1"

<nONTH vl)>S
m\'7iQ\n

<DAY (LT 4)>$
"Y74Ql"

<R_EQUEST (LCGTRY)>S
«y74Ql"

<SET CH EXECUTE>>S

The request was for all the information on host 31 (CCA) for
thp tiie period of 3 o'clock to 6 o'clock from January 1 to
January 3.

#CHANNEL [4 "READ" -I -1 "NET" 0 72ö0 13893763 "NET- 4127 4118
23748359936 <ERROR ENO-OF-FILE!-ERRORS) 0 0 0 0 10 "•]

<FILECOPY .CH .OUTCHAN>$
010174051203150012031
010174053203150012034
010174055203150012031
020174051003150012032
020r.'4053003150012038
020174055003150012036
030174051103150012025
030174053103140012000
030174055103150012029
189

The first six characters of each line are the date, followed
by four for the time, three for the host nunbor (031), one
for the status (5=logqer available), three for the socket
(001), one for the schedule (2=unknown), and three for the
response time in tenths of a second.

<CONTEXT>S
(Y74Q1
LIST
0
(LOGTRY
STRUCT
f)
(HAY STR (LT 4))
(MONTH STR (1))
(YEAR STR ())
(HRMIN 3TR (GT 500 AND LT 600))
(HOST STR (31))
(STATUS STR ())
(SOC STR {))
(SCHED STR ())
(RESTIME SIR ())))

The datalanguage code fo»- retrieval l^y content in this
example *as:

■ FOR L1.ST1,Y74Q1.L0GTRY
WIJH (DAY E5 'OP OR DAY {£ ,02, OR DAY £9 '03') AND

(MONTH E9 'OD AND
(HRMIN GT '0500' AND HRMIN U 'OöOO') AND
(HOST Eg ^P)

38

SlsDAY; 52«nONTH; S3»YEAR; 54»HWIIII;
S5«H0ST; S6sSTATUS; 57«50C; 5«»5CHED; 59«RE5TIHE;

END; "

for a port of description:

"CREATE LI TEW» PORT LIST
ST I STRUCT

51 STR (2)
52 STR (2)
53 STR (2)
54 STR (4)
55 STR (3)
56 STR (1)
57 SIR (3)
58 SJR (1)
59 SJR (3)

END ;•

Finally the session is ended by:

<DIS>S
"Connection to the Datacwifputer has been seve/ed."

39

IV. CONCLUDING REMARKS

HOC has been fully iaplcoented, tut it h«s yöt to be

documented for the general ARPANET comunity. I believe that

when it is documented and put to use, It will prove to be as

useful a progratauing tool as SURRET was found to be, but a far

more powerful one because of its generality.

Continual Improvement of the facility Mist go hand in

hand with the development of the Datacomputer. Version 1/0 of

the Datacomputer is about to be released, and it includes «any

foaturps that the former version did not possess. Tne

differences between the two versions however indicate that a

major reprogramming of HDC will not be necessary; changes will

need to be made, but to augment the facility as opposed to

completely changing it.

HDC currently provides both Huddle functiows and the

retrieval component of the Dataco^puter. A major ieproveaent to

the system would be the addition of a statistical package.

Rather than have U i package prograaaed in Huddle, use should

be made of other sites on the network (such as the Ffuitlcs

Consistent System) which already possess quite powerful

statisticöl packages. Taken together such a system would rerve

as an exemplary model of network resource sharing, while at the

same time provide an opportunity to explore soce areas of

network parallel processing.

4'J

REFEKFNCES

[I] D. East lake, et al. ITS l.S Reference Hanual. Hcaio Number
161A. Artificial Intelligence Laboratory, HIT. July 1969.

[2] Elliot Smith. The Datacomputer, Version 0/9—-A User
Plahuul. Computer Corporation cf America, Cambridge, Nass.
August 1973.

[3] Ricnard Winter. Specifications for Datalanguage: Version
0/9. Computer Corporation of America, Cambridge, Rass.

[4] Greg Pfister. A PfJODLE Primer. Document SYS.11.01,
Programming Technjlogy Division, Project FIAC, NIT. December
19/2.

[5] Specifications for the Interconnection of a HOST and an INP.
Report number 1822, Bolt Beranek and Newman Inc., Cambridge,
Mass.

[6] F. E. tfeart, et al. The Interface Nessage Processor for the
ARPA Computer Network. AFIPS Conf. Proc, VOIIäO 36. page
551. Nay 1970.

[7] C. ~ Carr, et al. HOST-HOST Coamnication Protocol In the
ARPA Network, AFIPS Conf. ?roc., volume 36, page 589. Nay
1970.

[8] T. CSullivan, et al. TELNET Protocol. ARPA Network
Information Center Document 6768. Nay 1971.

[9] A. NcKenzie. File Transfer Protocol. NIC Document 14333.

[10] R. Bressler, et al. Remote Job Entry Protocol. NIC
Document 12112. June 1971.

[II] J. Postel. Official Initial Connection Protocol. NIC
Document 7i07. June 1971.

[12] Safwan Bengelloun. NUDDLE Survey Data Retrieval Programs.
Document SR.10.06. Programming Technology Division, Project
NAC, NIT. January 1974.

41

APPENDIX U FILE WODELS

The file model used by HDC-PrograBaer is held 4^ a

fluddle list structure (do not confuse with a Datacoaputsr LIST).

Each list has its first object as the naae of a container and

the second object as the type of thj container. The regaining

objects in a list are then dependent on the type of container

that the list represents:

(a) For USTs the third object Is always an eapty list.

LISTs will also always have a fourth element which will be a

description list.

(b) For STRUCTs, the third eleaent is either #FALSE() or

specifies the length of a LIST that aay iaBßdiately enclcs« the

STRUCT (this is done only for enbedded LISTs). The renalning

objects of a STRUCT will be one or acre description lists.

(c) For STRs. the third object is always an eapty li t. The

fourth objert specifies the default value of the field or is a

#FAL5F(). The fifth object specifies the fixed length of the

field. The sixth object gives the padding character, if any.

and the seventh gives the direction of the padding (left or

righi). The eighth object states whether the STTl is an

inversion key or not; if it is and the STR holds numerical

values, the ninth and tenth objects will hold the naxiaua and

the minifDum valje respectively. The eleventh (optional) object

Performs the same function as STRUCT's third object, but for the

case where lists enclose only a single STR.

4Z

Following Is the aodtl built for the Hit PEOPLE that

was used in the SCENARIO section.

(PEOPLE LIST ()
(PERSON STRUCT #FALSE()
(NA.1E STR () #FALSE() 15 •■ T T #FALSE() #F/X5E())
(ADDRESS STR () #FALSE() 20 !" T #FAL5E() #FALSE() #FAL5E())
(CITY STR () #FALSE() 10 I" T #FAL5E() #FALSt() #FAISE())
(STATE STR () #FALSE() 2 #FALSE() #FALSE() #FA15E() IFALSE() #FALSE())
(ZIP STR () #FALSE() 5 #FALSE() #FALSE() #FALSE() ;FALSE() #FALSE())
(DEPENDENTS LIST ()
(DEPENDENT STRUCT I
(NAHE STR () #FALSE() \5 •■ T #FA«.SE() #FALSE() #rALSE())
(AGE STR () #FALSE() 2 '•0 T ^FALSE() #f'AL5E() #FALSE{))))))

43

APPENDIX Z: PROG RAH ABSTK.ACTS

The programs comprising NDC reside in the DHS Huddle

Library. Each program in the Library has an Abstract, also in

the Library, that gives necessary and sufficient information

about the program to allow direct use of the program by other

programs and to allow maintenance of the Library. This appendix

contains the Abstracts for the FIDC package itself and for its

"ports* — those programs designed to be called fro« outside the

package, for example from the user's console. For the sake of

brevity, Abstracts for the internal programs are not Included

here.

The various parts of an Abstract are naaed by Huddle

comnents (preceded by a semicolon), which briefly describe the

following part. Some parts are in turn made up of parts, in

hierarchical fashion. The hierarchy is defined by the various

brackets used to enclose fuddle objects in the Abstract, and it

is further indicated here by indentation.

Each Abstract is a Huddle vector (enclosed in []) whose

elements and subelements are vectors, strings (enclosed in ■),

lists (enclosed in ()), typt declarations (enclosed in () and

preceded by #DECL), forms (enclosed in <>), and atoms

(everything else).

44

Unique-narw" "NDC!-PACKAGE ■
Narafe" "HOC"
Author" ["SAB" ■JH."]
Object-typ«* "PACRAGE"
Contents* [

•Ports" ["CONTEXT- "NEWFILE"
"UNSOAK" "CVAl" "CREQOEST"
"REQUEST" "TIHE-CONSTAIIT" '

"PTOP" '
•R" eL"

VERBOT "TERSE" "SOAX"
"»■ "DL" "UL" "UR"

CON" "DIS" •EXECUTE" MNIT"]
"Internil-functions" ["SIBPLE" "51«. LIFY" "COISP" "COfmET"

"CRESTR" "CVAUIE" "CREQ* "PATHNAHw •IlliTVAL" "REOLIST"
"SETVAL" "PAD" "EXPAND" "RESOIVE" "tfcROLSP" 'OETLL" "CrETS"
-GETST" "NEXTS" "STRINGEP" "CRELIST" "CRESTRUC" "GETLEN"
"NAFISH" "FILIST" "FILISTl" "FILI5T2" "COHaiTl" "LISTN"
"COFfSTRUC" -COftLIST" "RTIHE" "NETINT* "ICP" "CONNECT"
"GETCODE" "DCERR" "PCON" "EXEC]

"Data-ports" [
; "Data-ports-global" []
; "Data-ports-local" [#0ECL ((TIRE.CONSTANT) FIX)

"TIFfE.CONSTANT dtteraines how long tht ICP should wait for a
response fro« the Dat^coaputer."]]

"Internal-data" [] 1

DATALANGÜAGE" "OATACOHPUTER" "RETIIEVAL-]

•INTERRUPTS"]

•Category" ["NETWORK^]
"Descriptor" ["NETWORk
"Exlernal-lnteractionsc [
; "Side-efftct" ["I/O" "IDENTIFIER" "DATA
; "Variables" [

; "Global" [
; "Setg'd- [#DECL ((NIN NOUT) <OR CHANNEL FALSE))]
: -Used- [#DECL ((NIN NOUT) <OR CHANNEL FALSE) (OUTCMÄN) CHANEL))]

; -Local- f
; "Set" [*DECl (

(DFD DPTR DSTLST FD NUWLIST PTR SIHPLENAHE SUBLIST? SUBVAL? STLST) LIST
(HIDE SOAK LC N SC 5TC SYNCF TI HE. CONSTANT) HX
(DLCODF hlSS PORTDESC PORTN SI TEH1) STRING)]

; "Used" [#DECL (
(DFD DPTR DSTLST FD NUHLIST PTR SIHPLENAHE STLST) LIST
(ARGS) <SPECIAL ATOH)
(HIDE LC N SC SOAK STC SYNCF TIHE.CONSTANT) FIX
(DLCODE HESS PORTDESC PORTN SI TEH1) STRING (ACl DONE) ACTIVATION
(CHICP) <SPECIAL <OR CHANNEL FALSE))
(INCHAN) <OR CHANNEL FALSE))]

; -Special- []]]
; -Functions called" [PPRINT RTIHE]
; -Environment" [

"Raquired- [)
"During- [)
'After- []]]

■Location- -LIBRARY"
■Reference- [-B.S.E.E. thesis. S. A. Bangelloun, June 1974"]

45

"Description" ["This is a general retrieval program for the
Datacomputer. The user manipulates a user-built file model to for«
a request in Datalanguage. REQUEST then send; the Datalanguage
program to the Datacomputer. The information it retrieves can be
printed on the user's console or written into a file.-]
"Argument" []
"Example" ["See scenario in thesis.8]
■Notes" []

46

"Unlque-nane" ■CONTEXT* »nDC,,

"Name" "CONTEXT"
"Author" "SAB"
"Object-type" "FUNCTION"
"Contents" []
"Category" ["UTILITY"]
"Descriptor" ["CONTEXT" "HOOEL" "POINTER" •OUTPUT-]
"External-interactions" [
; "Side-effect- []
; "Variables" [

; "Global" [}
; "Local" [

; "Set" []
; "Used" [^DECL ((DPTR) LIST)]
; "Special" []]]

; "Functions called" [PATHNAME PPRINT]
; "Environment" []]
"Location" "fIDC"
"Reference" ["HDC"]
"Description" ["
fONTfXT displays that portion of the fil« ae&l which is currently
to the right of the pointer."]
"Argument" [
; "Template" [#DECL ("VALUE" STRING) "rttumi p^thnaM ef potntar"]
; "Argument-type" []
; "Result-type- ["STRING"]]
-Example" [<CONTEXT>]
"Notes" []

47

-Unique-name- "NEWFILEI-NDC-
-Mame- -N'EWFILE"
-Author- -SAB-
-Object-type- -FUNCTION-
-Contents" []
-Category" ["DATA-HANDLING-]
-Descriptor- [-NEW- "FILE" VWDEL- "BINDING* ■CREATION" "FUNCTION"]
-External-interactions" [
; "Side-effect- [-I/O" "IDENTIFIER" "DATA"]
; "Variables- [

; -Global- [
; -Setg'd- []
; "Used- [#DECL ((NOUT) <OR CHANNEL FALSE))]]

; -Locai- [
; -Set- [#DECL (

(DFD DPTR DSTLST FD PTR SIPIPLENAflE STLST) LIST)]
: -Used- [#DECL (

(DFD DPTR FD PTR SIflPLENAnE) LIST (ARGS) <SPECIAL ATOfl))]
; "Special- [#DECL ((AÄGS) ATOfl)]]]

; "Functions called" [COHRET SIPIPLIFY CDISP]
; "Environment" []]
"Location" hnDC-
-Reference" [-HDC-]
-Description- [-
Newfile brings in a new file model. It also creates a series of
functions which permit the user to manipulate the file model.
Specifically, each function provides a mechanis« for changing the
value of the list which is associated with Its name •]
"Argument" [

-Template" [#DECL (-VALUE- STRING STRING) "arg 1$ local file naae"]
"Argument-tyoe- [-STRING-]
"Result-type- -STRING-]

"Exomple" [
mWFILE MSAB;SURVEY FILE-)
-The argument must be the name of a model file. "
<nONTH (JUN)>
"«ONTh is a created function that modifies the field AONTH in SURVEY
FILE It puts JUN into the list associated with the field HONTH."]
-Notes- []

i*

"unique-name" "PTOP'-FIDC-

"Name* mnctm

■Author" r3AB"
"Object-t>pe" "FUNCTION"
"Contents' []
-Category" ["PROGRAM-CONTROL"]
"Descriptor^ ["TOP" "WOOEL" "GOTO" ■POINTER•]
"External-interactions" [
; "Side-effect" []
; "Variables" [

; "Global" []
; "Local" [

•Set" [#DECL ((DPTR D5TL5T PTR STL5T) LIST)]
"Used" [#0ECL ((DFD FD) LIST)]
"Special" []]]

; "Functions called" [COWRET]
; "Enviroiment" []]
"Loca-ion" "PIDC"
"Reference" ["HDC"]
"Description" ["
This function noves the pointer to the top of the flit sodtl."]
"Argument" [
; "Template" [IDECL ("VALUE" STRING) -retonu pathname of polnttr*]
: "Argument-type" []
; "Result-type" ["STRING"]]
"Example" C<PTOP>]
"Notes" [j

49

"Unique-name" "VERBOSE!-«DC-

"Name" "VERBOSE"
"Author" "SAB"
"Object-type" "FUNCTION"
"Contents" []
"Category" ["DISPLAY"]
"Descriptor" ["CONTEXT" "POINTER" "CHANGE" ■OUTPUT"]
"External-interactions" [
; "Side-effect" []
; "Variables" [

; "Global" []
; "Local" [

; "oet" [IDECL ((HIDE) FIX)]
; "Used" []
; «Special" []]]

; "Functions called" []
; "Environment" []]
"Location" "KDC"
"Referpnce" ["HDC"]
"Description" ["
This function causes the prograa to enter verbose node.
In this mode the CONTEXT is printed whenever a function returns the
pointer pathname."]
"Argument" [

"Template" [#DECL ("VALUE" STRING) "retunu tilt string •DONE'«]
"Argument-type" []
"Result-type" ["STRING"]]

"Example" [<VERBOSE>]
"Notes" []

50

,'Unique-naI!^c,, "TERSE!-PfDC"
"Namo" "TERSE"
-Author" "SAB"
"Object-type" "FUWCTION"
"Corients" []
"Category" ["DISPLAY"]
-Descriptor" ["CONTEXT" "POINTER" "CHANGE" "OUTPUT"]
"External-interactions" [
; -Side-effect" []
; "Variables" [

; -Global" []
; "Local" [

; "Set" [#DErL ((HIDE) FIX)]
; -Used" []
; "Special" []]]

; "Functions called" []
; "Environment" []]
"Location" -PIDC*
-Reference" [-HOC"]
-Description" ["
Terse is the ^posite of verbose. In terst sodt only the pithnaae
of the pointer is printed "]
"Argument" [

"Template" [#DECL ("VALUE" STTUMG) "rtt«ni* the string 'DONE1"]
"Argument-type" []
"Result-type" ["STRING"]]

-Example- [<TER5E)]
-Notes- []

51

-Unique-name" "SOAK!-HOC"
■Wame" "SOAK"
"Author" "SAB"
"Object-type" "FUNCTION"
"Contents" []
"Category" ["DISPLAY9j
"Descriptor" ["OUTPUT" •DATACOHPUTER" "RESPONSE- ■CONTROL"]
"External-interactions" [
; "Side-effect" []
; "Variables" [

; "Global" []
; "Lo^l" [

; "Set" [#DECL ((SOAK) FIX)]
; "Used" []
; "Special" []]]

"Functions called" []
"Environment" []]

Location" "HDC"
"Reference" ["HDC"]
"Description" ["
Invoking SOAK inhibits th? printing, on the console, of subsequent
Datacomputer control Information sent across the Network
Connections."]
"Argument" [

"Template" [#DECL ("VALUE" CTRING) "returns the string ,DONE,■]
"Argument-type" []
"Result-type" ["STRING"]]

"Example" [<SOAK>]
"Notes" []

52

"Unique-name" "ÜNSOAK^HOC"
"Name" "UN50AK"
"Author" "SAB"
"Object-type" "FUNCTION"
"Contents" []
"Category" ["DISPLAY"]
"Descriptor" ["OUTPUT" "DATACOBPUTER" "RESPOWSE" "COWTROL"]
"External-interactions" [
; "Side-effect" []
; "Variables" [

; "Global" []
; "Local" [

; "Set" [#DECL ((SOAK) FIX)]
; "Used" []
; "Special" []]]

; "Functions called" []
; "Environment" []]
"Location" "HOC"
"Reference" ["HOC"]
description" ["

UNSOAK negates SOAK. All the control inforattion sent thtreaft:, by
the DatacoBiputer is printed on the console."]
"Argument" [

"Template" r#D£CL ("VALUE" STRING) Tttumi the string •DONE'"]
"Argument-type" []
"Result-type" ["STRING"]]

"Fxample" [vUNSOAX>]
"Notes' []

53

"Unique-name" •CVAU-HDC
"Name* "OML"
"Author" "SAB"
"Object-^vpe" "FUNCTION"
"Contents" []
"Categorv,' [BDATA-HANDLFNG"]
"Descripicr" ["CLEAR" "INITIALIZATION" "FIELD" "VALUE" "MODEL"

"CRITERION" "RESTRICTION"]
"External-interactions" [
; "Side-effect" []
; "Variables" [

: "Globa1" [j
; "Local" [

"Set" []
"Used" [#0ECL ((DPTR) LIST (PTR) LIST)]
"Sp^ciar []] 1

; "Functions called" [CCHRET CVALUE]
; "Environment" []]
"Location" "PIDC"
"Reference" ["HOC"]
"Description" ["
CVAL clears all the field values froo the file model that were set
by the user with field-naaed functions."]
"Argument" [
: "TeMplate1" [#?ECL ("VALUE" STRING "OPTIONAL" <0R FALSE L!5T> LIST)

"returns pathname of pointer"]
; "Argument-type" t"FALSE" "LIST"]
; "Result-type" ["STRINC:")]
"Example" [<CVAl>]
"Noces* [I

54

-»inique-naiw- •CREQUEST•-HDC•
-Name- "CREQUEST-

-Author' -SAB"
MObject-type" "FUNaiOW
"Contents" [J
-Category" ["DATA-HANDLING"]
"Descriptor" ["CLEAR" "INITIALIZATION" aRCQDUTfl •JUSULT-]
-External-interactions' [
; "Side-effect" []
; "Variables" [

; "Global" []
; -Local" (

; "Set" []
; -Used- [#DECL ((DPTR) LIST (PTR) LIST)}
; -Special" [] 1]

; "Functions ..ailed" [COffRET CREQ]
; -Environment- []]
"Location" "NDC"
"Referpnce- ["NOC"]
"Description- [-CREQUEST clears all user-s«t REQUEST fltlds.*]
-Argunent" [
; -Tafnplate- [#DECL {'VMxlV STRING ■OPTIOIIAL• <0R FALSE LI5T> L'^T)

"returns pathname of Ui« pointer"]
, "Argument-type" ["FALSE" "LIST"]
; "Result ype" ["STRING"]]
"Example" [
<CReQUEST>
"The optional arguments art used by internal functions.*]
"Notes" []

55

■RIGHT* "NODCL" "CONTEXT"]

■Unlque-nÄine" "RI-ffDC
"Name" "R"
"Author" "SAB"
"Object-type- "FUNCTION"
"Contents" []
"Category" ["DATA-HANDLING"]
"Doscnpto, " ["HOVE" "POINTER
"External-interactions" [
; "Side-effect" ["DATA"]
; "Variables" [

; "Global" []
; "Local" [

; "Set" [#DECL ((DPTR PTR) LIST)]
; "Used" [#DECL ((DPTR D5TL5T STLST) LIST (HIDE) FIX)]
; "Special" []]]

; "Functions called" [PATHNANE PPRINT]
; "Environment" []]
"Location" rnDC"
"Reference" ["HDC"]
■Description" ["
R moves the pointer to the right in the file •Bod?!."]
"Argument" [
; "Template" [#DECL ("VALUE" <0R FALSE STRING) "OPTIONAL* FIX,

"returns pathname of pointer"]
; "Argument-type" ["FIX"]
; "Result-tyrcr ["FALSE" "STRING"]]
"Example" i<R> "neves the pointer to the right 1 placs"

<R .FIX) "moves the pointer to th« right .FIX places"]
"Notes^ []

_

56

"Unique-naiM" "U-HDC*
"Maine- "L-

"Author" "SAB"
"Object-type" "FUNCTION"
"Contents" []
"Category" ["DATA-HANDLING"]
"Descriptor" ["HOVE" "POINTER15 "LEFT- "BOOEL" •COWTEXT«]
"External interactions" [
; "Side-effect" ["DATA"]
; "Variables" [

; "Global" []
; "Local" [

; "Set" C#0ECL ((DPTR PTR) LIST)]
; "Used" [#DECL {(DPTR D5TLST STLST) LIST {HIDE) FIX)]
; "Special" []]]

; "Functions called" [PATWABE PPRINT]
; "Environment" []]
-Location- "«DC"
-Reference" [-»DC']
"Description" [■
L movps the pointer to the left in the fils Svdal.*]
-Argument" [
; "Template" [#0ECL ("VALUE" <OR FALSE STIIIIB) •OPnONAl" FIX)

"returns pathname of the pointer"]
; "Argument-type" ["FIX"]
; "Result-type" ["FALSE" "STRING"]]
"Example" [<L> "moves pointer to the lift 1 place"

<L FIX) -moves pointer to the left .FIX places*]
•Notes" []

57

Unique-name* "DR'-nDC"
Name* "DR-
Author" "SAB"
Object-type" "FUNCTION"
Contents" []
Category" ["DATA-HANDLING"]
Descriptor" ["HOVE" "POINTER- "DOWN- "RIGHT" "RODEL" "CONTEXT"]
External-interactions" [
"Side-effect" []
"Variables" [
; "Global" []
: "Local" f

; "Set" [#DECL ((DPTR D5TLST PTR 5TLST) LIST)]
; nised" [#DECL ((HIDE) FIX (DPTR DSTL5T PTR 5TL5T) LIST)]
; -Special" []]]

; "Functions called" [PATHNAME »PRINT]
; "Environment" []]
"Location« "HDC"
"Reference" ["HDC"]
-Description" ["
DR moves the pointer down and tc tie right in the file aodel."]
"Aroument" [
; "Template" [#DECL ("VALUE" <OR FALSE STRING))

"returns pathname of the pointer"]
; "Argument-type" []
; "Result-type" ["FALSE" "STRING"]]
-Example" [<DR> "moves the pointer down one level to the right"]
•Notes" []

5«

-Unique-n mea "DLI-KOC1

"Name- "DL"
"Author" "SAB"
"Object-type" -FUNCTION"
"Contents" []
"CaUgory" ["DATA-HANDLING-]
-Descriptor" ["HOVE- -POINTER- -DOWN- -LEFT- •N00EL- -CONTEXT-)
""External-Interactions- [
; "Side-dffect" []
; -Variables" [

: "Global" []
; "Local" [

"Set" []
-Used" [IDECL ((DPTR STLST) LIST (HIDE) FIX)]
-Special" []]]

; "Functior.s called* [PATHNAME PPRINT R DU L]
; "Liivirom»ent- []]
"Lccalion" "HDC"
"Reference- ["HOC"]
"Description" ["
DL moves the pointer do*»n and to the left in the filt aodtl."]
"Argument" [
; "Template" [#DECL ("VALUE" <OR FALSE STRING))

"returns pathname >)f the pointer1']
; "Argument-type" []
; "Result-type- [-FALSE- -STRING-]]
"Example" [<DL> "moves the pointer do*n one level to the left"]
"Notes" []

]

59

-Unique-na^le', "UU «DC-
"Name" "UL"
"Author" "SAB"
"Object-type" "FUNCTION"
■Contents" {]
"Category" ["DATA-HANDLING"]
"Descriptor" ["HOVE" "POINTER" "UP" "LEFT* "HODEL" •C0»ITFAT•]
"External-interactions" [
; "Side-effect" []
; "Variables" [

; "Global" []
; "Local" [

; "Set" [#DECL ((DPTR DSTLS1 T^ STLST) LIST)]
; "Used" [#DECL (^DPTR DSTLST STLST) LIST (HIDE) FIX)]
; "Special" []]]

; "Functions called" [PATHNAME PPRINT]
; "Environment" []]
"Location" "HDC"
"Reference" ['?1DC"]
"Description" ["
lil. moves the pointer up and to the left in the file nodel."]
"Argument" [
; "Template" [#DECL ("VALUE" <OR FALSE STRING))

"returns pathname of the pointer"]
; "Argument-type" []
; "Result-type" ["FALSE" "STRING"]]
"Example" ["aoves pointer up one level to the left"]
"Notes" []

60

mttm _•• fmr. m "u'R'-nDC5

"Name- "UR"
"Author" "SAB-
-Object-type- -FUMCTION-
"Contents- [)
"Category- [-DATA-HAWDLINGB]
"Descriptor- [»HOVE- "POINTER- "UP" "RIGHT" "WODEL" "CONTEXT"]
"External-interactions" [
; -Siclp-effect- ["DATA-]
; ■V«riabl«$1 [

; "Global" []
• "Local" f

; "Set" [#0ECL ((DPTR DSTL5T PTR 5TL5T) LIST)]
; "Used" [#DECL ((DPTÄ D5TLST 3TL5T) LIST (HIDE) FIX)]
; "Special" []]]

; "Functions called" [PATHNAHE PPRINT]
; "Environment" []]
"Location- "HDC-
-Refcrence- [-HDC-j
-Description- ["
UR moves the pointer up and to the right in the file «odel "]
"Argument" [
; -Template" [#DECL ("VALUE" <OR FALSE STRIMO)

-returns pathnane o' the po' r"]
; "Argument-type" []
; "Result-type" ["FALSE" "STRING") J
"Example" [<UR> "■eves the pointer up one level to the right"]
-Notes" []

61

"Unique-name" "REQUEST!-nDC8

"Name" "REQUEST"
"Author" "SAB"
"Object-type" "FUNCTION"
"Contents" []
"Category" ["PROGRAH-CONTROL" "NETWORK"]
"Descriptor" ["DATACONPUTER" "FILE" "FIELD- "OUmiT" "RESULT"]
"External-interactions" [
; "Side-effect" []
; "Variables" [

; "Global" []
; "Local" [

; "Set" [}
; "Used* [#DECL ((DPTR D5TL5T PTR STL5T) LIST)]
; "Special" [#DECL ((STK) LIST (N H) FIX)]]]

; "Functions called" [CORRET REQLIST]
; "Environment" []]
"Location" "HDC"
"Rrfrronce" ["MDC"]
"Description" [
"REQUEST sets the request field for information retrieval.
This field determines what field(s) of the Dataconputer file should
be output."]
"Argumont" [
; "Template" [#DtCL ("VALUE" STRING LIST)
"Argument 1 is a list of field names. Returns pointer pathname."]
; "Argument-type" ["LIST"]
; "Result-type" ["STRING"]]
"Example" [<REQUEST (HONTH DAY HOST STATUS))
"This example is taken from the SURVEY FILE. It will cause the
Datalanguage program to ask for the date, host, and status fields."]
"Notes" []

b2

-Unique-name" ■ TIHE-CONSTANT l-ftDC"
-Wane" "TIPIE-CONSTANT"
"Author" -SAB"
"Object-type" "FUNCTION"
"Contents" [J
"Category- ["PROGRAM-CONTROL"]
"Descriptor" ["TIMEOUT" "LINIT" ■HOOIFICATIOW" "ICP"]
"External-interactio.»5" [
; "Side-effect" []
; »Variables" [

; "Global" []
; "Local" [

; "Set" [#DECL ((TINE.CONSTANT) FIX)]
; "Used" []
; "Special" []]]

; "Functions called" []
; "Environment" []]
"Location" "fIDC"
"Reference" ["NDC"]
"Description" ["
TIHE-CONSTANT is used to control the initial connection to the
Datacomputer. It düteraines how long the ICP should wait for
acknowledgement from a foreign host. If this function is not
called, the waiting period will be 20 seconds."]
"Argumtnt" [
; "Template" [#DECL ("VALUE" FIX <UNSPECIÄL FIX>)

argument is number of seconds. Retur j nuaber of seconds.']
; "Argument-type" ["FIX"]
; -Result-typo- ["FIX-]]
-Example- [<TIflE-CONSTANT 60> -It wili wilt for 60 Mconds.")
"Notes- []

63

"Unique-name1' "CON!-HOC"
"Name" "CON"
-Author" "SAB"
"Object-type" "FUNCTION"
"Contents" []
"Category" ["I/O"]
"Descriptor" ["CONNECTION" "ESTABLISH1 "DATACOHPUTER" ■ICP"]
"External-interactions" [
; "5id«-effect" ["I/O"]
; "Variables" [

; "Global" [
; "Setg'd" []
; "Used" [#DECL ((NOUT) <OR CHANNEL FALSE))]]

; "Local" [
"Set" [#DECL ((SYNCF) FIX)]
"Used" [#DECL ((FD) LIST)]
"Special" [#DECL ((N) <SPECIAL STRING))]]]

; "Functions called" [DIS PCON CONNECT]
; "Environment'' []]
"Location" "HDC"
"Reference" ["HDC"]
"Description" ["
CON attempts tc establish Network channels to/fro« the DaUco«jr»ter."]
"Argument" [
; "Template" [#DECL ("VALUE" <OR FALSE STRING))

"returns the string 'Connection to datacoaputer coapleted.'"]
; "Argument-type" []
; "Result-type" ["FALSE" "STRING"]]
"Example" [<C0N> "Invokes connsction rites."]
"Notes" ["
Normally CON will not be needid. UNIT) initializes the progran and
establishes the Network channe s."]

64

•TERHINATE" ■DISCONNECT» "DATACOBPUTER"]

-Unique-nane" "DISI-HDC"
-Name- "DIS-
"Author" "SAB"
-Object-type" ^1^110^
"Contents" []
"Category" ["I/O"]
"Oescriptor" ["CONNECTIOIü«
"External-interactions" [
; "Side-effect" ["I/0Hj
; "Variables" [

; "Global" [
; -Setg'd" []
: "Used" [#DECL ((NIN NOUT) <0R CHANNEL FALSE))]]

; "Local" []]
; "Functions called" []
; "Environment" []]
"Location" "HOC"
"Reference" ["MDC"j
"Description" ["
DI5 closes the Network channels to/fro« the Oatacoaputar.']
"Argument" [
; "Template" [#DECL ("VALUE" STRING)

"returns the string 'Connection to datacoaputer has been severed.'"]
; "Argument-type" []
; "Result-type" ["STRING"]]
"Example" [<DIS>3
"Notes" []

65

"Unique-name" "EXECUTE»-HDC"
"Name" "EXECUTE"
"Author" "SAB"
"Object-type" "FUNCTION"
"Contents" []
"Category" ["I/O" "NETWORK"]
"Descriptor" ["OUTPUT" "DATALANGUAGE" "SEND" •PROGRAIT]
"External-interactions" [
; "Side-effect" ["i/O^]
; "Variables" [

; "Global" [
; "Setg'd' []
; "Used" [#DECL ((NOUT) <OR CHANNEL FALSE))] j

; "Local" [
; "^et" []
; "Used" [#DECL ((PORTN) STRING (SYNCF) FIX)]
; "Special" [#DECL ((AC1) ACTIVATION)]]]

; "Functions called" [EXEC PCON]
; "Environment" []]
"Location" "MDC"
"Pefprpnce" ["«DC"]
"Description" ["EXECUTE execute, ne REQUEST to the Datäcosputer."]
"Argument" [

"Template" [#DECL ("VALUE" <OR CHANNEL FALSE))]
"Argument-type" []
"Pesult-type" ["CHANNEL" "FALSE"]]

"Example" [<FILECOPY <EXECUTE) .OUTCHAN)
"prints the information retrieved on the user's console■]

"Notes" []

6^

HlinM|iio-n.imoH "INIT'-flOC"

"Author- M.SAB"
"(;};,wrt-typfi" "FUNCTION*
"Conlonts" [J
Tatogory" ["I/O"]
MOescriptor" ["INITIALIZATION" "SETUP* ■CONNECTION" •ESTABLISH*

"ICP" "DATACOHPUTER" "LOGIN" "HODEL" "FILE"]
"External-intrractions" [
; "Side-effect" ["I/O"]
; "Variables" [

; "Global" []
; "Local" [

; "Set" [#DECL (
(DFD r K DSTLST FD PTR SlflPLENAflE STLST) LIST
(HIDE SOAK TIME.CONSTANT) FIX (TEPIl) STRING)]

; "Used" [#DECL ((DFD FD) LIST (INCHAN) <OR CHANNEL FALSE))]
. "Special" []]]

; "Functions called" [CON INITVAL SIMPLIFY CDISP]
: "tnvironnorrw" []]
"Location" "TüC"
"Reference" ["P!DC"]
"Description" ["
IMIT initializes the progran and sets up Network channels to/from
the Datacomputer."]
"Argumpnt" [
; "Template" [#DECL ("VALUE" STRING)]
; "Arg in»ent-type" [;
; "Result-type" ["SPiäL"]]
"Example" [
<INIT>
"It will ask for the name of a local file containing a Datacoaputer
file description and 'or a login name."
-SAB;PEOPLE FRF- "This is a local file."
"PUT.DflS.SURVEY" "This is a login raae."]
"Notes" [J

